Wie Farbe in die Welt der Fliege kommt
e Farbe in die Welt der Fliege kommt
Die Fähigkeit, Farben zu unterscheiden, beruht darauf, dass das Gehirn Signale aus Sinneszellen vergleicht, die durch Licht unterschiedlicher Wellenlänge angeregt werden. Wie aber gelangen Informationen über Farben ins Gehirn einer Fliege? Insekten besitzen Facettenaugen, welche aus vielen Einzelaugen aufgebaut sind. Ein Einzelauge besteht aus acht lichtempfindlichen Sinneszellen oder Photorezeptoren. Sechs von ihnen bilden einen Ring, in dessen Mitte die beiden weiteren Zellen liegen. Bei Fliegen werden die sechs äußeren Rezeptorzellen von Licht über einen breiten Wellenlängenbereich hinweg angesprochen. Da die Wahrnehmung einer Farbe auf der Verarbeitung von spezifischen Bereichen des Lichtspektrums beruht, gingen Forscher davon aus, dass diese Rezeptoren eher für Bewegungssehen zuständig sind. Die beiden inneren Photorezeptoren sprechen hingegen auf jeweils einen engen Wellenlängenbereich des Lichts an - und können damit eindeutige Informationen über Farbzusammensetzungen weiterleiten. Sie galten bisher als alleinige Quelle des Farbsehens der Fliege.
Neurowissenschaftler am Bernstein Zentrum München, dem Max-Planck-Institut für Neurobiologie in Martinsried und der Ludwig-Maximilians-Universität München stellten nun fest, dass diese Annahme revidiert werden muss. "Auch die äußeren Photorezeptoren tragen zur Farbunterscheidung bei der Fliege bei", sagt Thomas Wachtler, einer der an der Studie beteiligten Forscher. Anhand eines Computermodells simulierten die Biologen die Verarbeitung der Photorezeptorsignale im Fliegenauge - und erkannten, dass die Signale der äußeren Rezeptoren berücksichtigt werden muss, um die Farbunterscheidungsfähigkeit der Fliegen erklären zu können.
Um die theoretischen Daten zu stützen, untersuchten die Forscher in einem Experiment genetisch manipulierte Fliegen, bei denen nicht alle Photorezeptortypen funktionsfähig waren. So benutzten sie etwa Fliegen, die neben den äußeren Sinneszelle nur einen der beiden inneren farbspezifischen Rezeptorzellen besaßen - und trotzdem zwei Farben unterschieden konnten. "Dies zeigt, dass das Fliegengehirn Informationen von inneren und äußeren Photorezeptoren zum Vergleich heranzieht", erläutert Christopher Schnaitmann, Erstautor der Studie. Als die Wissenschaftler bei gesunden Fliegen die Aktivität der Nervenzellen hemmten, welche die Signale der äußeren Rezeptorzellen zum Gehirn weiterleiten, bestätigte sich diese Annahme: Die Fähigkeit der Fliegen, Farbunterschiede wahrzunehmen, war erheblich beeinträchtigt.
Die äußeren Photorezeptoren scheinen somit wahre Multitasking-Talente zu sein und sowohl zum Bewegungs- als auch Farbsehen der Fliege beizutragen. Diese Doppelrolle ist bei kleinen Tieren durchaus sinnvoll: So ist bei begrenzter Anzahl an Nervenzellen sichergestellt, dass die Fliege trotzdem komplexe visuelle Fähigkeiten besitzt - und leicht einen Brotkrümel von einem Staubkorn unterscheiden kann.
Das Bernstein Zentrum München ist Teil des Nationalen Bernstein Netzwerks Computational Neuroscience. Seit 2004 fördert das Bundesministerium für Bildung und Forschung (BMBF) mit dieser Initiative die neue Forschungsdisziplin Computational Neuroscience mit über 170 Mio. ?. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).
Weitere Informationen erteilen Ihnen gerne:
Dr. Hiromu Tanimoto
Max-Planck-Institut für Neurobiologie
Am Klopferspitz 18
82152 Martinsried
Tel: +49 (0)89 8578 3492
Email: hiromut@neuro.mpg.de
PD Dr. Thomas Wachtler
Ludwig-Maximilians-Universität
Department Biologie II
Grosshadernerstr. 2
82152 Martinsried
Tel: +49 (0)89 2180 74810
Email: wachtler@bio.lmu.de
Originalpublikation:
C. Schnaitmann, C. Garbers, T. Wachtler H. Tanimoto (2013): Color discrimination with broadband photoreceptors. Current Biology, 23(23): 2375-82.
http://dx.doi.org/10.1016/j.cub.2013.10.037
(pressrelations) - Welt der Fliege kommt
Die Fähigkeit, Farben zu unterscheiden, beruht darauf, dass das Gehirn Signale aus Sinneszellen vergleicht, die durch Licht unterschiedlicher Wellenlänge angeregt werden. Wie aber gelangen Informationen über Farben ins Gehirn einer Fliege? Insekten besitzen Facettenaugen, welche aus vielen Einzelaugen aufgebaut sind. Ein Einzelauge besteht aus acht lichtempfindlichen Sinneszellen oder Photorezeptoren. Sechs von ihnen bilden einen Ring, in dessen Mitte die beiden weiteren Zellen liegen. Bei Fliegen werden die sechs äußeren Rezeptorzellen von Licht über einen breiten Wellenlängenbereich hinweg angesprochen. Da die Wahrnehmung einer Farbe auf der Verarbeitung von spezifischen Bereichen des Lichtspektrums beruht, gingen Forscher davon aus, dass diese Rezeptoren eher für Bewegungssehen zuständig sind. Die beiden inneren Photorezeptoren sprechen hingegen auf jeweils einen engen Wellenlängenbereich des Lichts an - und können damit eindeutige Informationen über Farbzusammensetzungen weiterleiten. Sie galten bisher als alleinige Quelle des Farbsehens der Fliege.
Neurowissenschaftler am Bernstein Zentrum München, dem Max-Planck-Institut für Neurobiologie in Martinsried und der Ludwig-Maximilians-Universität München stellten nun fest, dass diese Annahme revidiert werden muss. "Auch die äußeren Photorezeptoren tragen zur Farbunterscheidung bei der Fliege bei", sagt Thomas Wachtler, einer der an der Studie beteiligten Forscher. Anhand eines Computermodells simulierten die Biologen die Verarbeitung der Photorezeptorsignale im Fliegenauge - und erkannten, dass die Signale der äußeren Rezeptoren berücksichtigt werden muss, um die Farbunterscheidungsfähigkeit der Fliegen erklären zu können.
Um die theoretischen Daten zu stützen, untersuchten die Forscher in einem Experiment genetisch manipulierte Fliegen, bei denen nicht alle Photorezeptortypen funktionsfähig waren. So benutzten sie etwa Fliegen, die neben den äußeren Sinneszelle nur einen der beiden inneren farbspezifischen Rezeptorzellen besaßen - und trotzdem zwei Farben unterschieden konnten. "Dies zeigt, dass das Fliegengehirn Informationen von inneren und äußeren Photorezeptoren zum Vergleich heranzieht", erläutert Christopher Schnaitmann, Erstautor der Studie. Als die Wissenschaftler bei gesunden Fliegen die Aktivität der Nervenzellen hemmten, welche die Signale der äußeren Rezeptorzellen zum Gehirn weiterleiten, bestätigte sich diese Annahme: Die Fähigkeit der Fliegen, Farbunterschiede wahrzunehmen, war erheblich beeinträchtigt.
Die äußeren Photorezeptoren scheinen somit wahre Multitasking-Talente zu sein und sowohl zum Bewegungs- als auch Farbsehen der Fliege beizutragen. Diese Doppelrolle ist bei kleinen Tieren durchaus sinnvoll: So ist bei begrenzter Anzahl an Nervenzellen sichergestellt, dass die Fliege trotzdem komplexe visuelle Fähigkeiten besitzt - und leicht einen Brotkrümel von einem Staubkorn unterscheiden kann.
Das Bernstein Zentrum München ist Teil des Nationalen Bernstein Netzwerks Computational Neuroscience. Seit 2004 fördert das Bundesministerium für Bildung und Forschung (BMBF) mit dieser Initiative die neue Forschungsdisziplin Computational Neuroscience mit über 170 Mio. ?. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).
Weitere Informationen erteilen Ihnen gerne:
Dr. Hiromu Tanimoto
Max-Planck-Institut für Neurobiologie
Am Klopferspitz 18
82152 Martinsried
Tel: +49 (0)89 8578 3492
Email: hiromut(at)neuro.mpg.de
PD Dr. Thomas Wachtler
Ludwig-Maximilians-Universität
Department Biologie II
Grosshadernerstr. 2
82152 Martinsried
Tel: +49 (0)89 2180 74810
Email: wachtler(at)bio.lmu.de
Originalpublikation:
C. Schnaitmann, C. Garbers, T. Wachtler H. Tanimoto (2013): Color discrimination with broadband photoreceptors. Current Biology, 23(23): 2375-82.
http://dx.doi.org/10.1016/j.cub.2013.10.037
Themen in dieser Meldung:
Unternehmensinformation / Kurzprofil:
Dr. Hiromu Tanimoto
Max-Planck-Institut für Neurobiologie
Am Klopferspitz 18
82152 Martinsried
Tel: +49 (0)89 8578 3492
Email: hiromut(at)neuro.mpg.de
PD Dr. Thomas Wachtler
Ludwig-Maximilians-Universität
Department Biologie II
Grosshadernerstr. 2
82152 Martinsried
Tel: +49 (0)89 2180 74810
Email: wachtler(at)bio.lmu.de
Datum: 13.12.2014 - 00:15 Uhr
Sprache: Deutsch
News-ID 1148545
Anzahl Zeichen: 0
pressrelations.de – ihr Partner für die Veröffentlichung von Pressemitteilungen und Presseterminen, Medienbeobachtung und Medienresonanzanalysen
Diese HerstellerNews wurde bisher 428 mal aufgerufen.
Die Meldung mit dem Titel:
"Wie Farbe in die Welt der Fliege kommt
"
steht unter der journalistisch-redaktionellen Verantwortung von
Bernstein Centers for Computational Neuroscience (Nachricht senden)
Beachten Sie bitte die weiteren Informationen zum Haftungsauschluß (gemäß TMG - TeleMedianGesetz) und dem Datenschutz (gemäß der DSGVO).
Alle Meldungen von Bernstein Centers for Computational Neuroscience
Hybrid-Wärmepumpe vereint Effizienz und Flexibilität
E-Schrott-Frühjahrsputz: Jeder Stecker zählt! - und jede Lampe.
Polytives präsentiert Additivtechnologie auf der Koplas 2025
Terra Clean Energy Corp. stellt die ersten drei Bohrlöcher auf Uranlagerstätte Fraser Lakes mit ermutigenden ersten Ergebnissen fertig
DULCOZERO FCL– Abwesenheit von freiem Chlor sicher überwachen