IndustrieTreff - Deep Learning: mit minimalem Aufwand zur optimalen Fehlererkennung auf EL Bildern

IndustrieTreff

Deep Learning: mit minimalem Aufwand zur optimalen Fehlererkennung auf EL Bildern

ID: 2061027

MBJ Solutions optimiert die Bildverarbeitung in der Produktion bei 3S Swiss Solar Solutions in Thun mit Hilfe von neuronalen Netzen.


(PresseBox) - In der vergangenen Woche konnte durch das Anlernen von kundenspezifischen, relevanten Fehlerbildern die Fehlererkennungsrate in der Produktion bei 3S in Thun deutlich optimiert werden.

3S Swiss Solar Solutions entwickeln und produzieren seit 2001 Solarmodule in der Schweiz. 3S Solarmodule werden direkt in die Gebäudehülle - dem Dach, der Fassade dem Balkongeländer - integriert. Schon seit 2010 setzt 3S die Elektrolumineszenzprüfung von MBJ Solutions zur Qualitätssicherung ihrer Module in der Produktion ein.

Im Produktionsprozess werden hochauflösende Bilddaten, die mit einem MBJ Elektrolumineszenzsystem aufgenommen wurden, in Sekundenbruchteilen durch den Einsatz von durch künstlicher Intelligenz erstellten neuronalen Netzen ausgewertet und die gefundenen Fehler in den Bildern markiert. Ein fehlerhaftes Modul wird so schnell und sicher erkannt und auf einen Reparaturplatz weitergeleitet. Dort werden der Fehler und der Ort des Fehlers auf einem Monitor angezeigt und es kann gezielt repariert werden. Erst dann wird das Modul weiter zum Laminieren geschickt. So spart 3S nicht nur Material und Zeit, sondern stellt an dieser Stelle schon die hohe Qualität seiner Solarmodule sicher. Die erkannten Fehler werden zudem genutzt um Prozessschritte, die vor dieser Inspektion liegen, zu korrigieren und zu verbessern.  

Wie funktioniert es?

MBJ Solutions stellt jedem Kunden ein vortrainiertes neuronales Netzwerk zur Verfügung, mit dem typische Fehler wie Mikrorisse, dunkle Bereiche und Lötfehler sicher erkannt und klassifiziert werden. Dieses Netzwerk kann bei Bedarf durch den MBJ Solutions Support mit Hilfe des Kunden oder auch vom Kunden selbst weiter angepasst werden. In diesem Fall war MBJ bei 3S vor Ort und die Optimierung erfolgte in enger Zusammenarbeit mit der Qualitätssicherung von 3S.





Wie funktioniert der MBJ Support beim Deep-Learning-Training vor Ort?

Vor Ort wird zusammen mit dem Kunden ermittelt, welche Defekte für ihn am kritischsten sind. Daraufhin werden Daten direkt aus der Produktionslinie gesammelt und analysiert. Die Netzwerke werden vom MBJ Experten trainiert, installiert und ausgewertet um die Fehlererkennungsrate zu beurteilen.

Die Netzwerk-Performance wurde mit 3S besprochen und weiter optimiert. Zusätzlich werden die von 3S definierten Qualitätskriterien für fehlerhaft einzustufende Module in der Maschine hinterlegt. Am Ende des MBJ Besuches läuft bei 3S eine speziell auf ihre Bedürfnisse optimierte hoch stabil funktionierende Defekterkennung für mehrere Defekttypen.

Welche Vorteile bietet MBJ dem Kunden mit Deep Learning?

Neuronale Netze erkennen die Defekte schneller, besser und immer gleich. Sie reduzieren gleichzeitig die Pseudofehlerrate erheblich.

Bemerkenswert ist, dass die künstliche Intelligenz sehr robust gegenüber Variationen im Zellmaterial ist. Die aufwändige und fehlerhafte Optimierung früherer Bildverarbeitungssysteme mit langen Listen von Parametern entfällt vollständig. Für eine Optimierung sind nur weitere Beispielbilder notwendig. 

Im Gegensatz zur klassischen Bildverarbeitung kann die künstliche Intelligenz mit wenig Aufwand um weitere Defektklassen nach Kundenanforderungen erweitert werden. Schon wenige Beispielbilder genügen, um eine neue Defektklasse anzulegen.

Der Kunde stellt einen Beispielkatalog von Bildern im niedrigen bis mittleren zweistelligen Bereich nach seinen Anforderungen zusammen und markiert in diesen Bildern die Defekte. Das neuronale Netz wird auf diese Beispiele optimiert und das optimierte Netz kann im Kundensystem verwendet werden.

MBJ bietet auch die tiefgreifende Hyperparameter-Optimierung an, die besonders für folgende Punkte wichtig ist:

Beste Detektionsleistung

Minimale Rechenleistung

Schnellste Merkmalsextraktion

Die MBJ Solutions GmbH ist spezialisiert auf die Entwicklung und den Vertrieb von Prüf- und Messsystemen für die Photovoltaikindustrie. MBJ bietet Sonnensimulatoren, Elektrolumineszenz-Prüfsysteme und Testsysteme für den Isolations- und Groundingtest für die Modulproduktion und den vor Ort Test im Solarpark an.

Das Unternehmen wurde 2009 gegründet und hat seitdem mehr als 500 Prüfsysteme weltweit verkauft. Der Unternehmenssitz der MBJ-Gruppe ist in Ahrensburg, im Einzugsbereich von Hamburg. Selbstverständlich entwickeln und produzieren wir in Deutschland. Da viele unserer Kunden in Asien ansässig sind, haben wir eine Serviceniederlassung in Taiwan.

Innovative Lösungen und Kundenorientierung stehen für uns im Fokus. Zu unseren Kunden zählen namhafte Institute und Hersteller der PV-Industrie. Unsere langjährige Erfahrung und ein motiviertes Team machen uns zum perfekten Partner für Ihre PV-Projekte.


Themen in dieser Meldung:


Unternehmensinformation / Kurzprofil:

Die MBJ Solutions GmbH ist spezialisiert auf die Entwicklung und den Vertrieb von Prüf- und Messsystemen für die Photovoltaikindustrie. MBJ bietet Sonnensimulatoren, Elektrolumineszenz-Prüfsysteme und Testsysteme für den Isolations- und Groundingtest für die Modulproduktion und den vor Ort Test im Solarpark an.
Das Unternehmen wurde 2009 gegründet und hat seitdem mehr als 500 Prüfsysteme weltweit verkauft. Der Unternehmenssitz der MBJ-Gruppe ist in Ahrensburg, im Einzugsbereich von Hamburg. Selbstverständlich entwickeln und produzieren wir in Deutschland. Da viele unserer Kunden in Asien ansässig sind, haben wir eine Serviceniederlassung in Taiwan.
Innovative Lösungen und Kundenorientierung stehen für uns im Fokus. Zu unseren Kunden zählen namhafte Institute und Hersteller der PV-Industrie. Unsere langjährige Erfahrung und ein motiviertes Team machen uns zum perfekten Partner für Ihre PV-Projekte.



Leseranfragen:



Kontakt / Agentur:



drucken  als PDF  an Freund senden  Bistro, Physio und viel mehr
Empathie auf Shopfloor-Ebene und gesamtbetrieblich eine wertvolle Bereicherung
Bereitgestellt von Benutzer: PresseBox
Datum: 30.08.2023 - 10:17 Uhr
Sprache: Deutsch
News-ID 2061027
Anzahl Zeichen: 0

Kontakt-Informationen:
Ansprechpartner: Dr. Michael Fuß
Stadt:

Ahrensburg


Telefon: +49 41 02 77 89 00

Kategorie:

Industrie


Anmerkungen:


Diese HerstellerNews wurde bisher 0 mal aufgerufen.


Die Meldung mit dem Titel:
"Deep Learning: mit minimalem Aufwand zur optimalen Fehlererkennung auf EL Bildern
"
steht unter der journalistisch-redaktionellen Verantwortung von

MBJ Solutions GmbH (Nachricht senden)

Beachten Sie bitte die weiteren Informationen zum Haftungsauschluß (gemäß TMG - TeleMedianGesetz) und dem Datenschutz (gemäß der DSGVO).


Alle Meldungen von MBJ Solutions GmbH